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Spherical particle immersed in a nematic liquid crystal: Effects of confinement
on the director field configurations

S. Grollau, N. L. Abbott, and J. J. de Pablo
Department of Chemical Engineering, University of Wisconsin, 1415 Engineering Drive, Madison, Wisconsin 53706

~Received 25 June 2002; published 16 January 2003!

The effects of confinement on the director field configurations are studied for a spherical particle immersed
in a nematic liquid crystal. The liquid crystal is confined in a cylindrical geometry and the particle is located
on the axis of symmetry. A finite element method is used to minimize the Frank free energy for various sizes
of the system. The liquid crystal is assumed to possess strong anchoring at all the surfaces in the system. Two
structures are examined for strong homeotropic anchoring at the surface of the particle: configuration with a
Saturn ring disclination line and configuration with a satellite point defect~hedgehog defect!. It is shown that
the equilibrium locations of the Saturn ring and of the hedgehog point defect change with confinement. It is
also found that confinement induces an increase in the elastic free energy that differs substantially with the type
of topological defect under consideration. In particular, the evaluation of the total free energy that includes an
approximate contribution for the core defect shows that, for micrometer-sized particles in confined systems, the
Saturn ring configuration appears to be more stable than the hedgehog defect. This result is in contrast to the
bulk situation, where the hedgehog is more stable than the Saturn ring, and it helps explain recent experimental
observations of Saturn ring defects around confined micrometer-sized solid particles.

DOI: 10.1103/PhysRevE.67.011702 PACS number~s!: 61.30.Jf, 77.84.Nh, 64.70.Md, 61.30.Dk
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I. INTRODUCTION

Colloidal suspensions and emulsions have attracted
siderable attention in technology and condensed matter p
ics. Colloidal systems or emulsions in a host liquid cryst
line fluid are of particular interest@1,2#. Several past
experimental studies have reported that the introduction
isotropic liquid microdroplets into uniformly aligned nemat
liquid crystals is accompanied by the formation of topolo
cal defects around the droplets. The topological defects
pear to mediate anisotropic forces that act between the d
lets and lead to the formation of unusual microstructures@3#,
such as linear chains. These anisotropic forces have bee
subject of theoretical studies@4–6# and also of direct experi
mental measurements@7#. As shown in these studies, th
nature of the forces between spherical colloids depends
the symmetry of the director configuration and also on
particle position with respect to the director axis@4#. Topo-
logical defects can also mediate interactions with confin
surfaces. For a quadrupolar spherical colloid, theoretical
guments have been used@6# to determine the profile of the
director at a distance remote from the particle, indicating t
the interaction between the particle with confining surface
repulsive for a rigidly anchored surface and is attractive
short separation distances if the sample surface exhibits
anchoring.

Distortions yielding topological defects can be induced
the geometry of the system and by controlling the orientat
of the liquid crystal at various surfaces in the system~the
so-called anchoring conditions!. At the experimental level
various treatments of solid surfaces such as mechanical
bing @8# or chemisorption of alkanethiols@9# permit control
of molecular orientation at the surfaces. For a water dro
in a liquid crystal, the anchoring conditions may be co
trolled by using various amphiphilic compounds adsorbed
1063-651X/2003/67~1!/011702~10!/$20.00 67 0117
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the droplet-liquid crystal interface@2#. Parallel and perpen
dicular orientations at a surface are referred to as planar
homeotropic anchoring, respectively. In the bulk, insertion
a spherical particle into a nematic solvent with strong h
meotropic anchoring at its surface yields two possible dir
tor configurations: configuration with a Saturn ring disclin
tion line or configuration with a satellite point defe
~hedgehog defect!. Determining the director distribution fo
each of these defects has been the subject of a numbe
studies. Some authors have proposed models based o
analogy between the directorn and an electrostatic field
@1,3#. Theoretical studies@4,10# have investigated the effec
of the strength of anchoring at the surface of the particle
the director configuration. The director configuration arou
a spherical particle has also been studied using molec
dynamics@11#, by numerical minimization of the Frank fre
energy@12# and by Monte Carlo simulations@13#. Most stud-
ies of particles dispersed in nematic fluids have been larg
concentrated on bulk systems. Experimental studies of
effects of confining surfaces on such systems have been
ited and, to the best of our knowledge, corresponding th
retical or numerical analyses have not appeared in the lit
ture. Studies of bulk systems by Stark@12# have shown that
the Saturn ring is favored as the size of the particle is
creased, and also by the application of an external magn
field. Literature results indicate that micrometer particles
the bulk are accompanied by a hedgehog defect, consis
with experimental observations@2#. In this paper, we presen
a numerical investigation of the effects of confining surfac
on the director field configurations around a spherical p
ticle that exhibits strong homeotropic anchoring at its s
face.

The effect of the confinement on the isotropic-nema
transition has been intensively investigated both experim
tally @14,15# and theoretically@16–18#. The preferred orien-
tation of the molecules at a confining surface produces
ordered layer at the interface. This order is transmitted to
©2003 The American Physical Society02-1
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bulk liquid crystal by elastic forces and it changes the beh
ior of nematogens, e.g., by shifting the transition tempera
and changing the order of the transition at a critical thic
ness. The existence of such a critical thickness arises f
the existence of an ordering field exerted by the walls. T
field may be compared to an external magnetic field capa
of aligning the molecules with itself~see Ref.@19# and ref-
erences therein!. In the present study we show that, similar
the effect of an external field@12#, confinement promotes th
Saturn ring configuration. More specifically, our results in
cate that confined micrometer particles may be surroun
by a stable Saturn ring disclination line. These results ar
distinct contrast with the situation in the bulk, and help e
plain recent observations of Saturn ring defects surround
micrometer-sized particles confined between two walls@20#.

The paper is organized as follows. In Sec. II, we introdu
the elastic free energy for the nematic liquid crystal and
scribe in detail the numerical procedure employed for
minimization. For the complex geometry of interest to th
work, the minimization of the free energy is performed usi
finite elements. In Sec. III, we present and discuss our
sults.

II. MINIMIZATION OF THE FRANK ELASTIC FREE
ENERGY

A. The elastic free energy

In an ideal nematic liquid crystal, the common, avera
direction of the molecules is characterized by the direc
6n(r ). The insertion of a spherical particle in the nema
liquid crystal as well as the constraints imposed by the
entation of the liquid crystal at a surface distorts the unifo
alignment. The free energy of slowly varying spatial dist
tions is determined by the Frank free energy@21#

Fe5E d3r f e~r !1E dS fs~r !, ~1!

where f e is the elastic free energy density,

f e5
1

2
$K1~“•n!21K2~n•“3n!21K3@n3~“3n!#2%,

~2!

and f s is the surface free energy density

f s5
1

2
W@12~n•n̂!2#. ~3!

The free energy densityf e describes the distortions in th
director field n(r ). The elastic constantsK1 , K2, and K3
correspond to the splay, twist, and bend deformations,
spectively. The surface free energy densityf s ~or Rapini-
Papoular term@22#! takes into account the contribution from
the surfaces, and the vectorn̂ indicates the preferred orien
tation at the surfaces. As discussed in the literature for
ticle in the bulk@10,13#, the director structure depends on t
effect of the relative strength of the nematic bulk elastic
and the director anchoring. When the anchoring is weak,
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director field perturbations are small and present quadrup
symmetry. On the other hand, for strong homeotropic
choring, both hedgehog defects and Saturn rings are
sible. In close analogy to the experimental realization, wh
topological defects have been observed around solid part
in a confined geometry@20#, in the present work we conside
the case of strong homeotropic anchoring at the surfac
the particle, and also strong planar anchoring at the walls.~In
the experimental realization, the strength of the anchorin
controlled by self-assembled monolayers of CH3(CH2)9SH
and CH3(CH2)15SH of different composition@20#!. For these
strong anchoring conditions, the directorn is aligned with
the preferred directionn̂, and the surface free energyf s is
equal to zero.

When defects are present in the system, the elastic F
free energy becomes singular at the core defect. As it is w
known, a treatment in terms of the director is not appropri
to describe the structure of the core defects. To investigat
detail the core defect, one should work with the tracel
symmetric tensor order parameterQab . More specifically, as
it is has been shown@23#, the structure of the core defect
characterized by strong biaxiality and a strong decreas
the nematic order parameter which reflects that the liq
crystal ‘‘melts’’ locally at the point defect. In the following
section, we explain how the contribution to the free ene
coming from the neighborhood of the core defect is appro
mately taken into account.

The equilibrium configuration of the directorn(r ) is ob-
tained by minimization of the Frank free energy, Eq.~1!. The
minimization of the free energy requires solution of a no
linear Euler-Lagrange equation. One possible method is
use a finite representation of the derivatives to solve
Euler-Lagrange equation@12#. Since the geometry consid
ered in this work is nontrivial, we prefer to use the method
finite elements@24#.

B. The geometry and the numerical procedure

The geometry of the system is presented in Fig. 1
spherical particle of radiusR is confined to a cylinder of
radiusRc and lengthLz . The particle is located on the axi
of the cylinder and the system exhibits axial symmetry. W
use cylindrical coordinates and assume that the directo
located in the plane (r,z) and is characterized by the ti
angleu(r,z),

n~r,z!5sinu~r,z!er1cosu~r,z!ez , ~4!

where (er ,ez) is the local coordinate basis. The constra
imposed on the director to be in the plane (r,z) implies that
the twist term in the free energy@Eq. ~2!# is zero, and that the
model does not allow for possible twist transitions~as it may
happen for the hedgehog defect@12#!. To allow for a twist
transition, one has to take into account thef degeneracy on
the director. As we show in the following section, the qua
titative changes in the free energy when one does not in
duce this additional degree of freedom are so small that
approximation is of little consequence to the present stud
2-2
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SPHERICAL PARTICLE IMMERSED IN A NEMATIC . . . PHYSICAL REVIEW E 67, 011702 ~2003!
Under the assumption of Eq.~4!, we write the Frank free
energy density in units ofK3 /R2,

f̃ e~u!5
f e

K3 /R2
5

K̃1

2 S sinu

r
1

]u

]r
cosu2

]u

]z
sinu D 2

1
1

2 S ]u

]z
cosu1

]u

]r
sinu D 2

, ~5!

whereK̃15K1 /K3 and all lengths are now given relative
the radiusR of the spherical particle. The ratioK̃1 of the
elastic constants is fixed atK̃150.79, which is representativ
of a pentylcyanobiphenyl~5CB! liquid crystal at room tem-
perature@2#.

For symmetry reasons, the minimization of the reduc
free energy

F̃e5E d3r f̃ e~u! ~6!

is performed in the restricted two-dimensional region defin
by 2Lz<z<Lz and 0<r<Rc . The area of integration is
covered by a net of triangles. This net is generated w
FLUENT software that permits the size of the triangles~or the
characteristic mesh resolutionb) to be specified with arbi-
trary precision. The calculations presented here are
formed with a mesh division ofb50.05 or b50.025 ~in
units of R). This precision offers a good description of th
director distribution in the neighborhood of defects, where
varies rapidly on short length scales. Furthermore, it allo
us to determine the precise location of the defects. Each

FIG. 1. Geometry of the system. The origin of the coordin
system is located in the middle of the cylinder.R is the radius of the
particle,Rc the radius of the cylinder, andLz its length. The director
n(r,z) is defined by the tilt angleu(r,z).
01170
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angle defines an element and is characterized by its t
vertices. The number of elements depends on the size o
cylinder and on the mesh division. For a cylinder withRc
53 and Lz54, the number of elements is of orderN
'9000 andN'37 000, forb50.05 andb50.025, respec-
tively.

The director fieldn(r ) is now described by a set ofN
vectors, whereN is the number of verticesi. At each vertex,
the director is characterized by the tilt angleu i . Due to the
symmetry n→2n, the angleu i is restricted to lie in the
range@0,p#. The functional minimization of the free energ
dF̃e /du(r )50, is transformed into the minimization of th
function F̃e($u i%) with respect to theN variables$u i%. With
finite elements, the minimization of the free energy is p
formed directly, without need for the Euler-Lagrange equ
tions. The principles of the numerical procedure are the sa
as those used in Ref.@24#. The free energy is written as th
sum

F̃e~$u i%!5(
j 51

Nt

F̃e
j ~u1

j ,u2
j ,u3

j !, ~7!

where the indexj runs over all theNt triangles of the mesh
F̃e

j (u1
j ,u2

j ,u3
j ) is the free energy of the trianglej, and the

angles (u1
j ,u2

j ,u3
j ) are the tilt angles of the director at th

corresponding three vertices. To evaluate the free energy
each triangle of areaAj , namely,

F̃e
j 52pE

Aj

dzdr r f̃ e~u@r,z# !, ~8!

it is convenient to introduce the coordinatesv andw defined
by

r j~v,w!5r1
j 1~r2

j 2r1
j !v1~r3

j 2r1
j !w, ~9!

zj~v,w!5z1
j 1~z2

j 2z1
j !v1~z3

j 2z1
j !w. ~10!

Here (r i
j ,zi

j ) are the coordinates of the vertices attached
the trianglej. The free energy of the trianglej @Eq. ~8!# is
then given by the integral

F̃e
j 52pD jE

0

1

dwE
0

12w

dvr j~v,w! f̃ e~u@v,w# !, ~11!

whereD j is the Jacobian determinant of the coordinate tra
formation, Eqs.~9! and ~10!. To evaluate the integral, Eq
~11!, one assumes that the distribution of the tilt ang
u(v,w) inside the small element is given by a linear inte
polation,

u j~v,w!5u1
j 1~u2

j 2u1
j !v1~u3

j 2u1
j !w, ~12!

and that r is given by the average valuer j5(r1
j 1r2

j

1r3
j )/3. The partial derivatives ofu(r,z), which are re-

quired for the evaluation of the Frank free energy are deri
from the distribution, Eq.~12!, and from the coordinate
transformation, Eqs.~9! and ~10!. In this framework, one is
2-3
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GROLLAU, ABBOTT, AND de PABLO PHYSICAL REVIEW E67, 011702 ~2003!
able to evaluate the free energy over the entire area of i
gration for any given distribution of the angles$u j%.

In the numerical procedure, an initial configuration is i
troduced, which describes approximately the director dis
bution for a given defect. To minimize the free energy,
relax the configuration towards equilibrium using a Newto
Gauss-Seidel method@25#,

u i
new5u i

old2F S ]F̃e

]u i
D Y S ]2F̃e

]u i
2 D G . ~13!

The derivatives of the free energy with respect tou i are
evaluated numerically. Once a new tilt angleu i

new is com-
puted, it is systematically inserted in the configuration for
evaluation of the next tilt angle. Note that the location of t
defect is fixed in the initial configuration, and it is observ
not to move during the relaxation procedure~for both the
Saturn ring defect as well as the hedgehog defect!. Similar
phenomena have been observed in other works@12,24#, in-
dicating that the numerical procedure does not allow
point defect to move automatically into its local minimum
To find the local minimum, one has thus to plot the fr
energy as a function of the location of the defect.

III. RESULTS

The orientation of the liquid crystal at the surfaces of t
cylinder is described in what follows. We assume strong p
nar anchoring at the surfacer5Rc , and strong homeotropic
anchoring at the wallsz56Lz/2. With these anchoring con
ditions, the average orientation of the liquid crystal at a la
distance from the particle is in theez direction. At the surface
of the particle, we specify strong homeotropic anchor
conditions. For these anchoring conditions, the particle m
be accompanied by two defects: the Saturn ring disclina
line or the hedgehog point defect. In this section, we pres
and discuss the results for these two defects.

A. Saturn ring disclination line

As an initial configuration, we use an expression com
from the ansatz function introduced in Ref.@10#. For a par-
ticle located at the origin of the coordinate system, an
proximate expression of the Saturn ring configuration
given by the tilt angle

u~r ,b!5b2
1

2
arctanS sin 2b

1/f ~r !1cos 2b D , ~14!

wheref (r ) is a unique function ofr and (r ,b) are the spheri-
cal coordinates~see Fig. 1!. This function must satisfy som
constraints to be compatible with the anchoring condition
the different surfaces of the system. The explicit form off (r )
for a particle in a bulk nematic is given in Ref.@10#. Here,
we use expression~14!, with

f ~r !5~a/r !3, ~15!

for a distancer smaller than a fixed valuea, and the corre-
sponding asymptotic form
01170
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u~r ,b!5a3
sin 2b

r 3
, ~16!

for a distancer greater than this valuea. With this initial
configuration, the Saturn ring defect is located atr5a and
z50 @since u(z50,r→a2)→p/2 and u(z50,r→a1)
→0]. In the neighborhood of the surface of the particle, t
constraintf (r 5R)51 compatible with the homeotropic an
choring is not satisfied. However, this has no consequen
since the strong homeotropic anchoring at the surface of
particle is imposed in the numerical procedure, and the
rector field goes to the equilibrium configuration compatib
with this anchoring condition.

We let the system relax to its equilibrium configuratio
and compute the resulting elastic free energyF̃e . This pro-
cedure assigns a free energy to the disclination line, whic
certainly not correct. As mentionned previously, to inves
gate in detail the core structure, one should work with
traceless symmetric tensor order parameterQab @26#. In the
neighborhood of the defect, we thus expect that the num
cal estimates given by the continuum theory are not relia
below a certain length scale. To obtain an estimate on
total free energy in the neighborhood of the defect, we cu
small cylinder of radiusD surrounding the core defect~see
Fig. 2!. The position of the core defect is determined au
matically by looking for the local maximum in the elast
free energy. The location of this maximum defines the cen
of the cut cylinder. The total free energy of the systemF̃ is
then given by

F̃5F̃e1F̃D , ~17!

whereF̃e is now the elastic contribution over the entire ar
of integration without the cut cylinder andF̃D is the free
energy of the small cylinder.~In the remainder of this work,
all numerical estimates of the total free energyF are given in
reduced unitsF̃5FR2/K3.! The evaluation ofF̃D should
include a contribution coming from the free energy of t

FIG. 2. Particle surrounded by a disclination line. A small cy
inder of radiusD is cut around the core defect of radiusr c .
2-4
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SPHERICAL PARTICLE IMMERSED IN A NEMATIC . . . PHYSICAL REVIEW E 67, 011702 ~2003!
core defect and also an elastic contribution coming from
region that extends outside the core radiusr c ~see Fig. 2!.
Here, we estimate the free energy densityf̃ D per unit length
(F̃D52pa f̃D) using the approximate expression

f̃ D5
p

4 F1

2
1 ln

D

r c
G . ~18!

The first term in the expression, Eq.~18!, corresponds to the
free energy of the core defect of radiusr c and the second
term is the elastic free energy around the core defect of
half-integer disclination line. Both expressions are obtain
in the one-constant approximation@27#. One could improve
quantitatively the estimate off̃ D , but this should not have
any significant consequence on the present study. To be
sistent, the evaluation of the total free energy should
depend on the radiusD of the cut cylinder. We have checke
the convergence of total free energy as the radiusD is in-
creased using different values of the mesh of the gridb
50.05 andb50.025) and changing the areapD2 of the cut
cylinder. For instance, fixing the radius of the Saturn ring
a51.25R and takingr c50.005, we have evaluated the tot
free energy for four sizes of the cut cylinder, withD varying
from D50.01 to D50.05. The estimates on the total fre
energy converge to a common value (F̃'37.5) within the
accuracy of orderDF̃/F̃'1%. These small numerical varia
tions allow for a good estimate of the total free energy a
as we will see below, are very small compared to the chan
in the free energy induced by the confinement.

The core defect is located in the middle of the cut cylind
~see Fig. 2!, but its radius is not knowna priori. Following
the analysis presented by Stark@12#, we use this property to
introduce an absolute length into the geometry of the syst
The radius of the core defect is considered as a param
andD gives an upper bound forr c . ~For instance, the value
of r c is taken to ber c50.005 orr c50.05 in units ofR). An
absolute length scale is introduced by fixingr c to its charac-
teristic size, which is of order 10 nm@27# (r c50.005 corre-
sponds to a sphere of radiusR52 mm).

The structure of the director field for a particle surround
by a Saturn ring defect is represented in Fig. 3. In this figu
the ring is located at a distancea51.25R. The radius of the
cylinder is Rc53, and its length isLz54. In this optical
picture, we have represented the director profile when
light is transmitted through two crossed polarizers in theer

and ez directions.~The bright area corresponds tou5p/4
when the light is transmitted and the dark area correspo
to u50 or u5p/2 when the director is aligned in the dire
tion of one of the polarizers.!

B. Hyperbolic hedgehog point defect

For a particle surrounded by the hedgehog point def
we use as the initial configuration the ansatz function
tained from the study of structure of the defect in the b
@3#. When the particle is located in the middle of the cyli
der, the director is approximately described by the tilt an
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u~r ,b!52b2arctanS r sinb

r cosb1aD2arctanS ar sinb

ar cosb11D
1h~a,r ,b!, ~19!

wherea is the distance between the particle and the def
and the functionh(a,r ,b) is introduced to ensure the corre
far-field behavior@the explicit form ofh(a,r ,b) is given in
Ref. @3##.

The extension of the point defect is also of order 10 n
In that case, the treatment of the hedgehog point defec
more straightforward than that of the Saturn ring disclinat
line; the contribution in the total free energy coming from t
defect is small and induces changes less thanDF/F51%.
This difference between the two configurations comes fr
the fact that the hedgehog defect is a point defect. The
energy associated with the point defect is of orderK3
310 nm. As long as one is concerned with particles of
dius greater than 100 nm, this quantity represents less
1% of the total free energy and can be neglected@12#. As
mentioned previously, the absolute length of the system
introduced by fixing the radiusr c of the core defect to a
certain value. For a given geometry, when the particle
surrounded by a Saturn ring defect, the total free energyF̃ of
the system varies asr c is changed. This variation is assoc
ated with the varying length of the disclination line. On th
other hand, when the particle is surrounded by the hedge
point defect, the total free energy of the system stays c
stant and does not depend onr c . Indeed, since the free en
ergy associated to the point defect is not taken into acco
the total free energy of the system is given by the ela
Frank free energy which is constant when all lengths

FIG. 3. ~Color online only! Director configuration for a particle
surrounded by the Saturn ring disclination line. In this optical p
ture, the dark area corresponds tou5p/2 or u50, and the bright
area corresponds tou5p/4.
2-5
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GROLLAU, ABBOTT, AND de PABLO PHYSICAL REVIEW E67, 011702 ~2003!
expressed in units ofR. The reduced free energyF̃ is thus
independent on the size of the particle.~This approximation
should be reasonable as long as the particle is bigger
R'100 nm and that the contribution from the core def
can be neglected.!

The structure of the director field for a particle surround
by a hedgehog defect is represented in Fig. 4. The p
defect is located at a distancea51.2R, the radius of the
cylinder isRc53, and its length isLz54.

C. Discussion

We have determined the size of the cylinder, which c
responds to the bulk conditions for the two defects. We
sume that the bulk limit is recovered once the elastic f
energy remains constant as the size of the cylinder is
creased in one of the two directions,er andez . This analysis
provides an estimate of the lengths beyond which the de
does not distort the uniform alignment of the nematic liqu
crystal.

We consider first a cylinder withRc53 andLz54. The
particle is fixed on the axis of the cylinder and is progre
sively moved axially from the centerz50 to one of the
surfaces. The variation between positions isDz50.2. To
evaluate the ensuing changes in the elastic free energy
parameterb has to be small compared toDz. Here, the mesh
is fixed at b50.005. The variations in the free energ
F̃(z)2F̃(z50), are reported in Fig. 5. For a particle su
rounded by a Saturn ring, the free energy remains unalte
for a small displacement of the particle from the center:
free energy forz50 is the same as forz520.2 ~within
numerical accuracy!. This indicates thatLz54 corresponds

FIG. 4. ~Color online only! Director configuration for a particle
surrounded by a hedgehog point defect. The particle is located
equilibrium positionz'20.4 ~see the discussion in the text!. The
color key is the same as in Fig. 3.
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to the bulk limit. @The Saturn ring is located here ata

51.25R; and for a 2-mm particle, F̃(0)'37.50]. As the
particle gets closer to the horizontal surface, the surface
ates a repulsive force corresponding to the distortion of
director induced by the spherical shape of the particle and
plane geometry of the surface. Due to the symmetry of
Saturn ring configuration, the particle is trapped between
two horizontal surfaces. If the size of the cylinder is i
creased in ther direction toRc54, the free energy does no
change~the variation of the free energy asRc is decreased is
discussed in the next paragraph, and the data forRc53 and
Rc54 are reported in Fig. 8!. Thus, when the particle is
surrounded by the Saturn ring, the bulk limit is recover
when Rc53 and Lz54. In contrast, when the particle i
accompanied by a hedgehog defect, a small displaceme
the particle from the center induces a change in the f
energy~see Fig. 5!. @The hedgehog defect is here located
a51.2R and F̃(0)'23.97.# This result indicates that the
particle interacts with the confining horizontal surfac
through elastic forces even atz50. The energetic contribu
tion arising from the distortion as the point defect approac
the surface is large, and is indicative of a considerable re
sive force between the wall and the point defect. A parti
accompanied by the hedgehog defect in a confined geom
is thus trapped by elastic forces at a nonsymmetric loca
to balance these two repulsive forces of different mag
tudes. WhenRc53 andLz54, the equilibrium location of
the particle is atz'20.4. For the hedgehog configuratio
one has to increase the size of the cylinder in the two dir
tions to recover the bulk limit. We find that the bulk limit i
recovered whenRc54 andLz56.

We have studied the evolution of the total free energy
the positions of the point defect and of the ring are chang
The results are reported in Fig. 6 in the bulk limit for
particle withR52 mm. To obtain the location of the defec
with useful accuracy, the mesh of the grid is fixed here at

its

FIG. 5. Variation of the elastic free energy,F̃(z)2F̃(0), as the
particle is moved away from the center of the cylinder (Rc53,Lz

54). A particle surrounded by a hedgehog defect is trapped by
elastic forces at the positionz'20.4.
2-6
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SPHERICAL PARTICLE IMMERSED IN A NEMATIC . . . PHYSICAL REVIEW E 67, 011702 ~2003!
value b50.025. The equilibrium position of the ring isa
'1.10R. This estimate is consistent with previous estima
obtained with ansatz functionsa'1.25R @10# and a
'1.08R @3#. It is also closed to the results obtained wi
Monte Carlo simulation @13#. This method predictsa
'1.13R in the limit of strong homeotropic anchoring o
sphere surface. It is in very good agreement with the va
a51.10R obtained by numerical minimization@12# ~in the
one-constant approximation and forR50.72mm), and it
agrees with experimental valuesa5(1.09160.005)R anda
5(1.09560.003)R @20# ~these values were measured f
particles with R5100 mm and R560 mm, respectively!.
For the hedgehog configuration, the distance from the
ticle to the point defect is betweena51.20R and a
51.25R. This estimate of the position of the point defect
in good agreement with the estimatea51.17R, obtained
with a trial function @1#, and with the valuea5(1.26
60.02)R obtained by numerical minimization@12#. It is
closed to the Monte Carlo results@13# in the strong anchor-

FIG. 6. Total free energy for various locations of the Saturn r
disclination line~top! and the hedgehog point defect~bottom!, in
the bulk limit and forR52 mm.
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ing limit a'1.22R. We observe that the minimum in fre
energy is lower for the hedgehog configuration than for
Saturn ring configuration. This result suggests that in
bulk, a particle withR52 mm is accompanied by a stabl
hedgehog defect. This analysis has already been perfor
by Stark @12# to interpret the experimentally observed d
fects that arise with micrometer-sized particles. We ha
verified the accuracy of our calculations and compared
results to those of Stark; the results for the total free ene
for various sizes of particle are reported in Fig. 7. The agr
ment is quantitative~to make the comparison betweenF̄ in
Ref. @12# and F̃, one has to take into account the factorp).
Our results indicate that for a particle in the bulk and sma
thanR5250 nm, the Saturn ring configuration is more stab
than the hedgehog, which is in very good agreement with
past analysis@12#.

The effects of confinement are investigated first by d
creasing the radius of the cylinder. For each defect,
lengthLz is fixed at the value corresponding to the bulk lim
in the z direction. In Fig. 8, we have reported the total fre
energy of the system for a particle withR52 mm, in both
the Saturn ring and hedgehog defect cases. Five geome
have been considered, namelyRc54,3,1.4,1.3, andRc
51.2. We find that the radius of the ring defect decrease
the radius of the cylinder decreases. For a very small cy
der, we note indeed a significant shift in the equilibrium p
sition of the defect when compared to the equilibrium loc
tion in the bulk limit: the radius of the ring is approximate
located ata'1.08R whenRc51.2, in contrast toa'1.10R
when Rc54. This shift corresponds to the elastic force e
erted by the walls, which tends to align the molecules in
z direction and pushes the defect closer to the particle.
location of the hedgehog defect is also slightly shifted un
the effect of confinement. We find that the defect is located
a'1.20R for Rc51.2. The total free energy reported in Fi
8 corresponds toa51.20R ~on this scale, one cannot distin
guish the difference in the total free energy betweena

FIG. 7. Transition from Saturn ring to hedgehog defect for
particle in the bulk.
2-7



ze
ing
er

-
e-
s,
i

fo
fo

le

t

th

om

r-
in

of
all

stic

d

in
by a
s
ts
ous
de-
ons
og
og
turn
ar-
e
by
er-
rn
n
ver
les
-

urn
cts.
and

, the
nts;
der.
ment

a

GROLLAU, ABBOTT, AND de PABLO PHYSICAL REVIEW E67, 011702 ~2003!
51.20R anda51.25R). The results serve also to emphasi
that the distortion of the director created by the confin
surfaces induces a strong increase in the elastic free en
For example, for a particle withR52 mm confined to a
small cylinder of radiusRc51.2, confinement leads to a re
versal of stability in which the Saturn ring configuration b
comes more stable than the hedgehog configuration. Thu
contrast to the bulk situation, the Saturn ring configuration
expected to be more stable than the hedgehog defect
micrometer particle. We have performed this analysis
three different particle sizes (R52 mm, R540 mm, andR
5100 mm). The results are reported in Fig. 9 for a partic
confined to a cylinder of radiusRc51.2R. For this geometry,
our results indicate that the transition from the Saturn ring
the hedgehog defect occurs at a radius ofR520 mm. The
net effect of the neighboring surfaces is thus to promote
stability of the Saturn ring.

These results on the effect of confinement should be c
pared qualitatively with the effect of external magnetic~or
electric! fields. The study reported by Stark@12# indicates

FIG. 8. Total free energy for a particle withR52 mm, sur-
rounded by a Saturn ring~top! and by a hedgehog defect~bottom!,
for various radiiRc of the cylinder.
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that the stability of the Saturn ring configuration, for a pa
ticle in the bulk, is promoted by an external field applied
the direction of the symmetry axis~thez direction!. For posi-
tive anisotropic susceptibility~or permittivity!, the applied
magnetic field tends to align the molecules in the direction
the external field. In the present study, liquid crystals at
various confining surfaces are aligned in thez direction. The
order at the surfaces is transmitted to the bulk through ela
forces, and the wall acts as an external field~promoting the
Saturn ring configuration!.

In a recent experiment@20#, Gu and Abbott have observe
particles of radii ranging fromR540 mm to 100mm, sur-
rounded by a Saturn ring. The particles are immersed
nematic 5CB and confined between two walls separated
distance of 120mm ~and with the same anchoring condition
as in the present study!. Some of these Saturn ring defec
were observed to be stable for over 1 month. Spontane
transformations of Saturn ring defects to other types of
fects were also observed. The transformed configurati
have a dipolar symmetry, like the symmetry of the hedgeh
defect, but cannot be definitively classified as hedgeh
point defects. These experiments indicate also that the Sa
ring is not exactly located in the equatorial plane of the p
ticle but it deviates from it, exhibiting some oscillations. Th
deformation of the Saturn ring may be an effect induced
the presence of the two confining walls. Indeed, the two v
tical walls should affect the axial symmetry of the Satu
ring configuration and thus distort slightly the disclinatio
line. The existence of these Saturn rings for durations of o
1 month, and the fact that they form for such large partic
(40 mm<R<100 mm) suggest that the confinement in
duced by the walls influences the metastability of the Sat
ring and pathways that convert Saturn rings to point defe

To establish a comparison between these experiments
the present work, some precautions must be taken. First
geometry of the present system differs from the experime
the results presented here concern particles in a cylin
Second, the present study addresses the effect of confine

FIG. 9. Transition from Saturn ring to hedgehog defect for
particle confined by a cylinder withRc51.2R.
2-8
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SPHERICAL PARTICLE IMMERSED IN A NEMATIC . . . PHYSICAL REVIEW E 67, 011702 ~2003!
on the stability of the defects and does not give any inform
tion on metastability or pathways that convert a Saturn r
to other defects. Qualitatively, this study indicates that
Saturn ring configuration is promoted by confinement a
that it can become the most stable configuration in a confi
geometry. For instance, a particle withR52 mm should be
surrounded by a stable Saturn ring when confined in a
inder withRc /R51.2. On the other hand, as Fig. 9 indicate
for the same value of the ratioRc /R51.2, the Saturn ring
configuration for particles of radiiR540 mm and R
5100 mm is not the most stable one, compared to the hed
hog. ~In experiments, spontaneous, transformed configu
tions are observed in a slightly different geometry, with p
ticles of radii R540 mm and R5100 mm, and with a
separation of 120mm between the two vertical walls.! From
the experiments and from the present study, one can
conclude that confinement influences both the metastab
and the stability of the Saturn ring configuration.

FIG. 10. Total free energy for a particle withR52 mm, sur-
rounded by a Saturn ring~top! and by a hedgehog defect~bottom!,
confined between two horizontal plates with various lengthsLz of
the cylinder.
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We have performed the same analysis by confining
particle between two plates. This is achieved by decreas
the lengthLz of the cylinder and fixing the radiusRc to the
bulk value. In this geometry, the confining surfaces are t
parallel to the plane defined by the Saturn ring disclinat
line. The total free energy for the valuesLz54,3,2.5 is re-
ported in Fig. 10, for both the Saturn ring and the hedgeh
defects. For the hedgehog defect we have also reporte
the total free energy in the bulk limitLz56. In this figure,
the radius of the particle is fixed atR52 mm, and the par-
ticle is located in the middle of the layer. The transition fro
the Saturn ring to the hedgehog is summarized in Fig. 11,
Lz52.5. For this geometry, as mentioned previously,
equilibrium location of a particle surrounded by the hedg
hog defect is not in the middle of the two plates, but t
particle is trapped at a shifted vertical position. In Fig. 11,
have reported the free energy when the particle is in
middle of the layer and when the particle is trapped at
shifted equilibrium position near one of the surfaces. Acco
ing to these results, forR52 mm, a particle near the surface
which is accompanied by the hedgehog defect is more st
than a particle in the middle, which is accompanied by
Saturn ring. Thus, for a distanceLz52.5, the transition be-
tween the two defects occurs slightly belowR52 mm. From
these results, we conclude that the confinement between
horizontal plates is qualitatively similar to the confinement
a small cylinder, promoting also the Saturn ring configu
tion. In the cylinderRc /R51.2, the transition occurs aroun
R520 mm, whereas for the present geometry withLz
52.5, the effect of confinement is less pronounced with
transition occurring aroundR52 mm. These predictions
also appear relevant to the past experimental observati
Past experiments conducted with particles of radii rang
from 40 mm to 100mm and confined between two horizon
tal walls with homeotropic anchoring separated by 120mm
indicate that the Saturn ring is not long lived. These obs
vations suggest that the effect of confinement is less p
nounced in this geometry than when the particle is confin

FIG. 11. Transition from Saturn ring to hedgehog defect fo
particle confined between two horizontal plates withLz52.5R.
2-9
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GROLLAU, ABBOTT, AND de PABLO PHYSICAL REVIEW E67, 011702 ~2003!
between two vertical walls with planar anchoring. It wou
be interesting to conduct additional experiments with t
geometry and using micrometer-sized particles, to inve
gate the possible coexistence of the two defects with
shifted equilibrium position of the particle accompanied b
hedgehog defect.

IV. CONCLUSION

In this paper, we have determined the structure of
director field around a particle immersed in a confined ne
atic liquid crystal. We have considered strong homeotro
anchoring conditions at the surface of the particle and s
ied the transition from the Saturn ring to the hedgehog
fect. The results obtained in the bulk limit agree well wi
previous analyses. In particular, for a particle in the bulk,
find that the hedgehog configuration is more stable than
Saturn ring when the radius of the particle is larger thanR
5250 nm. We have investigated the effect of confining s
ce

ev

y

.

-
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faces on the transition between the two configurations
considering a particle confined in a cylinder and between
plates. For a particle of radiusR52 mm and confined by a
cylinder of radiusRc51.2R, we have shown that the confin
ing surfaces cause a reversal of the stability, in which
Saturn ring configuration becomes more stable than
hedgehog configuration. These results contrast with the b
and indicate that, for both geometries, the confinement p
motes the stability of the Saturn ring configuration. Th
study helps us to understand the existing experimental ob
vations for confined systems where the metastablity of
Saturn ring is shown to be influenced by the presence
confining surfaces.
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