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Spherical particle immersed in a nematic liquid crystal: Effects of confinement
on the director field configurations
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The effects of confinement on the director field configurations are studied for a spherical particle immersed
in a nematic liquid crystal. The liquid crystal is confined in a cylindrical geometry and the particle is located
on the axis of symmetry. A finite element method is used to minimize the Frank free energy for various sizes
of the system. The liquid crystal is assumed to possess strong anchoring at all the surfaces in the system. Two
structures are examined for strong homeotropic anchoring at the surface of the particle: configuration with a
Saturn ring disclination line and configuration with a satellite point defeetigehog defegtlt is shown that
the equilibrium locations of the Saturn ring and of the hedgehog point defect change with confinement. It is
also found that confinement induces an increase in the elastic free energy that differs substantially with the type
of topological defect under consideration. In particular, the evaluation of the total free energy that includes an
approximate contribution for the core defect shows that, for micrometer-sized particles in confined systems, the
Saturn ring configuration appears to be more stable than the hedgehog defect. This result is in contrast to the
bulk situation, where the hedgehog is more stable than the Saturn ring, and it helps explain recent experimental
observations of Saturn ring defects around confined micrometer-sized solid particles.
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[. INTRODUCTION the droplet-liquid crystal interfacg?]. Parallel and perpen-
dicular orientations at a surface are referred to as planar and
Colloidal suspensions and emulsions have attracted coftomeotropic anchoring, respectively. In the bulk, insertion of
siderable attention in technology and condensed matter phy&- SPherical particle into a nematic solvent with strong ho-
ics. Colloidal systems or emulsions in a host liquid Crysta|_meotrop|c anchoring at its surface yields two possible direc-

line fluid are of particular interesf1,2]. Several past tor configurations: configuration with a Saturn ring disclina-

jon line or configuration with a satellite point defect

experimental studies have reported that the introduction Oghedgehog defert Determining the director distribution for

i;otropic quuid.microdroplet's into uniformly a!igned nematig each of these defects has been the subject of a number of
liquid crystals is accompanied by the formation of topologi- g dies. Some authors have proposed models based on the
cal defects around the droplets. The topological defects apanalogy between the director and an electrostatic field
pear to mediate anisotropic forces that act between the drop1,3]. Theoretical studief4,10] have investigated the effect
lets and lead to the formation of unusual microstruct{iBds  of the strength of anchoring at the surface of the particle on
such as linear chains. These anisotropic forces have been ttiee director configuration. The director configuration around
subject of theoretical studi¢4—6] and also of direct experi- @ spherical particle has also been studied using molecular
mental measuremen(§]. As shown in these studies, the dynamics[11], by numerical minimization of the Frank free
nature of the forces between spherical colloids depends of€rg¥12] and by Monte Carlo simulatiorid 3]. Most stud-

the symmetry of the director configuration and also on thd®S of particles dispersed in nematic fluids have been largely

article position with respect to the director afd. Topo- concentrated on bulk systems. Experimental studies of the
P P P - 10P effects of confining surfaces on such systems have been lim-

logical defects can also mediate ir_lteractiorjs with confininqted and, to the best of our knowledge, corresponding theo-
surfaces. For a quadrupolar spherical colloid, theoretical afgtical or numerical analyses have not appeared in the litera-
guments have been usg@] to determine the profile of the tyre. Studies of bulk systems by Stdf¢] have shown that
director at a distance remote from the particle, indicating thathe Saturn ring is favored as the size of the particle is de-
the interaction between the particle with confining surfaces igreased, and also by the application of an external magnetic
repulsive for a rigidly anchored surface and is attractive afield. Literature results indicate that micrometer particles in
short separation distances if the sample surface exhibits satie bulk are accompanied by a hedgehog defect, consistent
anchoring. with experimental observatiofg]. In this paper, we present
Distortions yielding topological defects can be induced bya numerical investigation of the effects of confining surfaces
the geometry of the system and by controlling the orientatioron the director field configurations around a spherical par-
of the liquid crystal at various surfaces in the systéhe ticle that exhibits strong homeotropic anchoring at its sur-
so-called anchoring conditionsAt the experimental level, face.
various treatments of solid surfaces such as mechanical rub- The effect of the confinement on the isotropic-nematic
bing [8] or chemisorption of alkanethiol®] permit control  transition has been intensively investigated both experimen-
of molecular orientation at the surfaces. For a water dropletally [14,15 and theoreticallf16—18. The preferred orien-
in a liquid crystal, the anchoring conditions may be con-tation of the molecules at a confining surface produces an
trolled by using various amphiphilic compounds adsorbed abrdered layer at the interface. This order is transmitted to the
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bulk liquid crystal by elastic forces and it changes the behavdirector field perturbations are small and present quadrupolar
ior of nematogens, e.g., by shifting the transition temperatureymmetry. On the other hand, for strong homeotropic an-
and changing the order of the transition at a critical thick-choring, both hedgehog defects and Saturn rings are pos-
ness. The existence of such a critical thickness arises fromible. In close analogy to the experimental realization, where
the existence of an ordering field exerted by the walls. Thidopological defects have been observed around solid particles
field may be compared to an external magnetic field capabla a confined geometrj20], in the present work we consider
of aligning the molecules with itselfsee Ref[19] and ref-  the case of strong homeotropic anchoring at the surface of
erences therejnin the present study we show that, similar to the particle, and also strong planar anchoring at the wfis.
the effect of an external field 2], confinement promotes the the experimental realization, the strength of the anchoring is
Saturn ring configuration. More specifically, our results indi-controlled by self-assembled monolayers of LL&H,),SH
cate that confined micrometer particles may be surroundednd CH(CH,)5SH of different compositiofi20]). For these
by a stable Saturn ring disclination line. These results are istrong anchoring conditions, the directaris aligned with
distinct contrast with the situation in the bulk, and help ex-the preferred direction, and the surface free enerdy is
plain recent observations of Saturn ring defects surroundingqyal to zero.
micrometer-sized particles confined between two wWalt. When defects are present in the system, the elastic Frank
The paper is organized as follows. In Sec. Il, we introducéree energy becomes singular at the core defect. As it is well
the elastic free energy for the nematic liquid crystal and degnown, a treatment in terms of the director is not appropriate
scribe in detail the numerical procedure employed for itstg describe the structure of the core defects. To investigate in
minimization. For the complex geometry of interest to thisgetail the core defect, one should work with the traceless
work, the minimization of the free energy is performed usingsymmetric tensor order parame®@y,;. More specifically, as
finite elements. In Sec. Ill, we present and discuss our ey js has been showf23], the structure of the core defect is

sults. characterized by strong biaxiality and a strong decrease in
the nematic order parameter which reflects that the liquid

Il. MINIMIZATION OF THE FRANK ELASTIC FREE crystal “melts” locally at the point defect. In the following
ENERGY section, we explain how the contribution to the free energy

coming from the neighborhood of the core defect is approxi-
mately taken into account.

In an ideal nematic liquid crystal, the common, average The equilibrium configuration of the directoi(r) is ob-
direction of the molecules is characterized by the directotained by minimization of the Frank free energy, Eb. The
+n(r). The insertion of a spherical particle in the nematicminimization of the free energy requires solution of a non-
liquid crystal as well as the constraints imposed by the ori{inear Euler-Lagrange equation. One possible method is to
entation of the liquid crystal at a surface distorts the uniformuse a finite representation of the derivatives to solve the
alignment. The free energy of slowly varying spatial distor-Euler-Lagrange equatiofil2]. Since the geometry consid-
tions is determined by the Frank free enefgy] ered in this work is nontrivial, we prefer to use the method of
finite elementg24].

A. The elastic free energy

Fe=f d3rfe(r)+f dSfy(r), (1)

B. The geometry and the numerical procedure

wherefe is the elastic free energy density, The geometry of the system is presented in Fig. 1. A

1 spherical particle of radiu® is confined to a cylinder of
fezi{Kl(V‘n)2+ Ko(n-V Xn)2+Kg[nx (Vxn)]?}, radiusR; and lengthL,. The particle is located on the axis
@ of the cylinder and the system exhibits axial symmetry. We
use cylindrical coordinates and assume that the director is
andf. is the surface free energy density located in the planeg(z) and is characterized by the tilt
angled(p,z),
fs=;W[1—(n-f/)2]. 3 N(p,z)=sinb(p,z)e,+cosd(p,z)e,, 4

The free energy densitf, describes the distortions in the where @, ,e,) is the local coordinate basis. The constraint
director fieldn(r). The elastic constant,;, K,, andKs;  jmposed on the director to be in the planeZ) implies that
correspond to the splay, twist, and bend deformations, rethe twist term in the free enerdgq. (2)] is zero, and that the
spectively. The surface free energy dendity(or Rapini-  model does not allow for possible twist transitigias it may
Papoular ternf22]) takes into account the contribution from happen for the hedgehog defdd2]). To allow for a twist

the surfaces, and the vecterindicates the preferred orien- transition, one has to take into account thelegeneracy on
tation at the surfaces. As discussed in the literature for parthe director. As we show in the following section, the quan-
ticle in the bulk[10,13, the director structure depends on the titative changes in the free energy when one does not intro-
effect of the relative strength of the nematic bulk elasticityduce this additional degree of freedom are so small that this
and the director anchoring. When the anchoring is weak, thapproximation is of little consequence to the present study.
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N angle defines an element and is characterized by its three
vertices. The number of elements depends on the size of the
cylinder and on the mesh division. For a cylinder wigh

o =3 and L,=4, the number of elements is of ordé&f
:(p 2 ~9000 andN~37 000, forb=0.05 andb=0.025, respec-
' tively.
The director fieldn(r) is now described by a set &f
r vectors, wheréN is the number of vertices At each vertex,

the director is characterized by the tilt angle Due to the
symmetryn— —n, the angle#,; is restricted to lie in the
range[ 0,7r]. The functional minimization of the free energy,

> > SF¢/56(r)=0, is transformed into the minimization of the

function Fo({6;}) with respect to the\ variables{ §;}. With
finite elements, the minimization of the free energy is per-
formed directly, without need for the Euler-Lagrange equa-
tions. The principles of the numerical procedure are the same
as those used in Refi24]. The free energy is written as the
sum

Lz

N¢
R Fe({6ih) =2, Fi(6},6),65), @
C j=1

FIG. 1. Geometry of the system. The origin of the coordinateyhere the indej runs over all theN, triangles of the mesh.
system is located in the middle of the cylind@iis the radius of the =, i 4i 4iy ; .
particle,R; the radius of the cylinder, arld, its length. The director Fe(03,0 i 031-) ISJ- the free e.nergy of the trlangle and the
angles ¢}, 65,6%) are the tilt angles of the director at the

n(p.z) is defined by the tilt angl®(p,z). . -
(p2) y gielp.2) corresponding three vertices. To evaluate the free energy for

Under the assumption of E¢4), we write the Frank free ©ach triangle of areal;, namely,
energy density in units dk3/R?,

o 2 Fi-2n | dzdo(otp.2)). ®
~ fo Ky(sing a6 a0 A
fe(6)= =5 +(9—cos¢9— a—sma
Ks/R P z it is convenient to introduce the coordinatesndw defined
2 Peosor Leing| 5
=| —cos+ —sind| , _ o o
2\ gz dp p'(v,W)=pl+(ph—phv+(ph—phw, ©)
whereK ;=K /K and all lengths are now given relative to Zj(U,W)=Zj1+(Zj2—Zj1)U +(zj3—zjl)w. (10)

the radiusR of the spherical particle. The ratig; of the o
elastic constants is fixed Kt = 0.79, which is representative Here (pf,2]) are the coordinates of the vertices attached to
of a pentylcyanobipheny(5CB) liquid crystal at room tem- the trianglej. The free energy of the triangle[Eqg. (8)] is

perature 2]. then given by the integral
For symmetry reasons, the minimization of the reduced L w
free energy T:g=27m,—f0 dwf0 dvpl(v,W)To(B[v,w]), (11)
— 3. F
Fe_f drfe(6) ©) whereA; is the Jacobian determinant of the coordinate trans-

formation, Egs.(9) and (10). To evaluate the integral, Eq.
is performed in the restricted two-dimensional region defined11), one assumes that the distribution of the tilt angle
by —L,<z=<L, and O<p<R.. The area of integration is 6(v,w) inside the small element is given by a linear inter-
covered by a net of triangles. This net is generated wittpolation,
FLUENT software that permits the size of the triang(esthe _ ) ) ) ) )
characteristic mesh resolutidy) to be specified with arbi- 0 (v,w)= 6, + (65— 6)v+ (05— 6w, (12
trary precision. The calculations presented here are per- _ o
formed with a mesh division ob=0.05 orb=0.025(in  and thatp is given by the average valup'=(p}+ p}
units of R). This precision offers a good description of the +pl)/3. The partial derivatives ofi(p,z), which are re-
director distribution in the neighborhood of defects, where itquired for the evaluation of the Frank free energy are derived
varies rapidly on short length scales. Furthermore, it allowdrom the distribution, Eq.(12), and from the coordinate
us to determine the precise location of the defects. Each triransformation, Eq99) and (10). In this framework, one is
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able to evaluate the free energy over the entire area of inte-
gration for any given distribution of the anglé8;}.

In the numerical procedure, an initial configuration is in-
troduced, which describes approximately the director distri-
bution for a given defect. To minimize the free energy, we
relax the configuration towards equilibrium using a Newton-
Gauss-Seidel methd@5],

D

7 ’l\\
( Tc
-

= = ]
aF &°F
new_ qold__ | [ Z_ € € /
0, 0; (391)/(803) . (13 N
The derivatives of the free energy with respectéoare
evaluated numerically. Once a new tilt anglg®" is com-
puted, it is systematically inserted in the configuration for the
evaluation of the next tilt angle. Note that the location of the

defect is fixed in the initial configuration, and it is observed
not to move during the relaxation procedufer both the FIG. 2. F_’artic_le surrounded by a disclination Iine: A small cyl-
Saturn ring defect as well as the hedgehog dgfeimilar inder of radiusD is cut around the core defect of radiys.
phenomena have been observed in other wftRs24), in-

dicating that the numerical procedure does not allow the sin28

point defect to move automatically into its local minimum. o(r.p)=a’— —, (16)
To find the local minimum, one has thus to plot the free r
energy as a function of the location of the defect.

for a distancer greater than this valua. With this initial
configuration, the Saturn ring defect is locatedoata and
z=0 [since 6(z=0p—a”)—x/2 and 6(z=0p—a™)

The orientation of the liquid crystal at the surfaces of the—0]. In the neighborhood of the surface of the particle, the
cylinder is described in what follows. We assume strong placonstraintf(r =R) =1 compatible with the homeotropic an-
nar anchoring at the surfage=R;, and strong homeotropic choring is not satisfied. However, this has no consequences
anchoring at the wallg= = L,/2. With these anchoring con- since the strong homeotropic anchoring at the surface of the
ditions, the average orientation of the liquid crystal at a largeparticle is imposed in the numerical procedure, and the di-
distance from the particle is in the direction. At the surface  rector field goes to the equilibrium configuration compatible
of the particle, we specify strong homeotropic anchoringwith this anchoring condition.
conditions. For these anchoring conditions, the particle may We let the system relax to its equilibrium configuration
be accompanied by two defects: the Saturn ring disclinatiomnd compute the resulting elastic free enegy This pro-
line or the hedgehog point defect. In this section, we preserdedure assigns a free energy to the disclination line, which is

Ill. RESULTS

and discuss the results for these two defects. certainly not correct. As mentionned previously, to investi-
gate in detail the core structure, one should work with the
A. Saturn ring disclination line traceless symmetric tensor order param@gy, [26]. In the

I . . . . neighborhood of the defect, we thus expect that the numeri-
As an initial configuration, we use an expression coming

from the ansatz function introduced in REL0]. For a par- cal estimates given by the continuum t_heory are not reliable

. - . below a certain length scale. To obtain an estimate on the

ticle located at the origin of the coordinate system, an ap: : !
. . ) ) - __“total free energy in the neighborhood of the defect, we cut a

proximate expression of the Saturn ring configuration is . . .

iven by the tilt angle small cylinder of .radlusD surrounding th_e core de_fe(:ssee

9 Fig. 2. The position of the core defect is determined auto-

matically by looking for the local maximum in the elastic

o(r,B)=pB— %arctar{% , (14 free energy. The location of this maximum defines trle center
of the cut cylinder. The total free energy of the systéns
wheref(r) is a unique function of and (,3) are the spheri- then given by
cal coordinategsee Fig. 1 This function must satisfy some ~
constraints to be compatible with the anchoring conditions at F=F¢+Fp, (17)
the different surfaces of the system. The explicit fornf @)
for a particle in a bulk nematic is given in R¢fl0]. Here,  \yhereF, is now the elastic contribution over the entire area

we use expressiofl4), with of integration without the cut cylinder anTélD is the free
f(r)=(a/r)3, (15) energy of the small cylindefln the remainder of this work,
all numerical estimates of the total free eneFgsire given in
for a distance smaller than a fixed valua, and the corre- reduced unitsF =FR?/K3.) The evaluation ofF, should
sponding asymptotic form include a contribution coming from the free energy of the
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core defect and also an elastic contribution coming from the z
region that extends outside the core radiygsee Fig. 2

Here, we estimate the free energy densigyper unit length
(Fp=2mafp) using the approximate expression

(18)

The first term in the expression, E@.8), corresponds to the 4
free energy of the core defect of radiug and the second
term is the elastic free energy around the core defect of the
half-integer disclination line. Both expressions are obtained
in the one-constant approximati¢f7]. One could improve

guantitatively the estimate &fD, but this should not have -
any significant consequence on the present study. To be cor
sistent, the evaluation of the total free energy should not
depend on the radiu3 of the cut cylinder. We have checked
the convergence of total free energy as the raduis in-
creased using different values of the mesh of the ghd ( *
=0.05 ando=0.025) and changing the aredD? of the cut
cylinder. For instance, fixing the radius of the Saturn ring at  FIG. 3. (Color online only Director configuration for a particle
a=1.23R and takingr.=0.005, we have evaluated the total surrounded by the Saturn ring disclination line. In this optical pic-
free energy for four sizes of the cut cylinder, withvarying  ture, the dark area correspondséte 7/2 or #=0, and the bright
from D=0.01 toD=0.05. The estimates on the total free area corresponds = 7/4.

energy converge to a common valué~37.5) within the

accuracy of ordeAF/F~1%. These small numerical varia-
tions allow for a good estimate of the total free energy and,
as we will see below, are very small compared to the changes
in the free energy induced by the confinement. +h(ar,p), (19

The core defect is located in the middle of the cut cylinder ) ) )

(see Fig. 2, but its radius is not knowa priori. Following ~ Wherea is the distance between the particle and the defect,
the analysis presented by Stdf2], we use this property to and the functiorh(a,r,8) is introduced to ensure the correct
introduce an absolute length into the geometry of the systenfar-field behaviofthe explicit form ofh(a,r,B) is given in

The radius of the core defect is considered as a parametdref. [3]].

andD gives an upper bound far,. (For instance, the value The extension of the point defect is also of orQer 10 nm.
of r is taken to be .= 0.005 orr.=0.05 in units ofR). An In that case, the treatment of the hedgehog point defect is
absolute length scale is introduced by fixingto its charac- ~more straightforvv.ard.than that of the Saturn ring disclination
teristic size, which is of order 10 nfi27] (r.=0.005 corre- line; the_ contrlbutlon_ln the total free energy coming from the
sponds to a sphere of radi@s=2 um). defectlls small and induces changes. less phEnin 1%.

The structure of the director field for a particle surrounded! his difference between the two configurations comes from
by a Saturn ring defect is represented in Fig. 3. In this figurethe fact that the hedgehog defect is a point defect. The free
the ring is located at a distanee= 1.25R. The radius of the €nergy associated with the point defect is of ordey
cylinder is R,=3, and its length id,=4. In this optical >§10 nm. As long as one is cpncerne;d with particles of ra-
picture, we have represented the director profile when th8ius greater than 100 nm, this quantity represents less than
light is transmitted through two crossed polarizers in ¢he 1% of the total free energy and can be negledtEdl. As
and e, directions.(The bright area corresponds to= /4 _ment|oned prev_|o_usly, the apsolute length of the system is
when the light is transmitted and the dark area correspond8troduced by fixing the radius. of the core defect to a
to =0 or 6= =/2 when the director is aligned in the direc- Certain value. For a given geometry, when the particle is
tion of one of the polarizers. surrounded by a Saturn ring defect, the total free enErgy
the system varies ag. is changed. This variation is associ-
ated with the varying length of the disclination line. On the
other hand, when the particle is surrounded by the hedgehog

For a particle surrounded by the hedgehog point defectpoint defect, the total free energy of the system stays con-
we use as the initial configuration the ansatz function obstant and does not depend opn Indeed, since the free en-
tained from the study of structure of the defect in the bulkergy associated to the point defect is not taken into account,
[3]. When the patrticle is located in the middle of the cylin- the total free energy of the system is given by the elastic
der, the director is approximately described by the tilt angleFrank free energy which is constant when all lengths are

0.0 0.5 1.0 1.5 20 25 3.0

rsing
r cosp+a

ar sing
arcosg+1

o(r,B)=2B— arctaré - arctarﬁ

B. Hyperbolic hedgehog point defect
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G - -0 Hedgehog
5 ¢&—= Saturn ring

F(2)-F©0)

FIG. 5. Variation of the elastic free enerdy(z) —F(0), as the
particle is moved away from the center of the cylindB.€3,L,
0o 05 1.0 15 20 o5 a0 =4). A particle surrounded by a hedgehog defect is trapped by the
elastic forces at the positian~—0.4.

-2

FIG. 4. (Color online only Director configuration for a particle
surrounded by a hedgehog point defect. The particle is located at it® the bulk limit. [The Saturn ring is located here at
equilibrium positionz~ —0.4 (see the discussion in the tgxThe =1.25R; and for a 2um particle,ﬁ(O)wS?.SO]. As the
color key is the same as in Fig. 3. particle gets closer to the horizontal surface, the surface cre-

ates a repulsive force corresponding to the distortion of the

expressed in units dR. The reduced free energ:y is thus director induced by the spherical shape of the particle and the
independent on the size of the partiol€his approximation plane geometry of the surface. Due to the symmetry of the
should be reasonable as long as the particle is bigger tha®aturn ring configuration, the particle is trapped between the
R~100 nm and that the contribution from the core defecttwo horizontal surfaces. If the size of the cylinder is in-
can be neglectep. creased in the direction toR.=4, the free energy does not

The structure of the director field for a particle surroundedchange(the variation of the free energy &; is decreased is
by a hedgehog defect is represented in Fig. 4. The poindiscussed in the next paragraph, and the dat&fer3 and
defect is located at a distanee=1.2R, the radius of the R;=4 are reported in Fig.)8 Thus, when the particle is
cylinder isR.=3, and its length id. ,=4. surrounded by the Saturn ring, the bulk limit is recovered
when R.=3 andL,=4. In contrast, when the particle is
accompanied by a hedgehog defect, a small displacement of
the particle from the center induces a change in the free

We have determined the size of the cylinder, which cor-energy(see Fig. 5. [The hedgehog defect is here located at
responds to the bulk conditions for the two defects. We asz—1 or and E(0)~23.97] This result indicates that the

sume that the bulk limit is recovered once the elastic freg,article interacts with the confining horizontal surfaces
energy remains constant as the size of the cylinder is ingyrough elastic forces even at0. The energetic contribu-
creased in one of the two directiorg,ande;, . This analysis  tjon arising from the distortion as the point defect approaches
provides an estimate of the lengths beyond which the defeghe syrface is large, and is indicative of a considerable repul-
does not distort the uniform alignment of the nematic liquidgjye force between the wall and the point defect. A particle
crystal. _ _ _ accompanied by the hedgehog defect in a confined geometry
We consider first a cylinder witR.=3 andL,=4. The 5 thus trapped by elastic forces at a nonsymmetric location
particle is fixed on the axis of the cylinder and is progres-y palance these two repulsive forces of different magni-
sively moved axially from the center=0 to one of the {,des. WherR,=3 andL,=4, the equilibrium location of
surfaces. The variation between positionsAig=0.2. To  the particle is az~—0.4. For the hedgehog configuration,
evaluate the ensuing changes in the elastic free energy, the has to increase the size of the cylinder in the two direc-
parameteb has to be small compared &x. Here, the mesh  tjons to recover the bulk limit. We find that the bulk limit is
is fixed atb=0.005. The variations in the free energy, recovered wheR,=4 andL,=6.
F(2)—F(z=0), are reported in Fig. 5. For a particle sur-  We have studied the evolution of the total free energy as
rounded by a Saturn ring, the free energy remains unalteretthe positions of the point defect and of the ring are changed.
for a small displacement of the particle from the center: theThe results are reported in Fig. 6 in the bulk limit for a
free energy forz=0 is the same as for=—0.2 (within  particle withR=2 um. To obtain the location of the defect
numerical accuragy This indicates that ,=4 corresponds with useful accuracy, the mesh of the grid is fixed here at the

C. Discussion
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42 T T T T T L ! !
36 —— R=2000nm | T
------------ R=1000nm
---- R=500nm
wr | ——- R=250nm
—-— R=208nm
ag L _ st .
~~~
= s
o AL
36 I
26 .
34 .
32 1 1 1 1
1 1.1 1.2 1.3 1.4 15 24 s ! s s
a (Saturn rlng) Saturn ring Hedgehog
25 ' ' ' ' FIG. 7. Transition from Saturn ring to hedgehog defect for a
particle in the bulk.
245 - T ing limit a~1.22R. We observe that the minimum in free
energy is lower for the hedgehog configuration than for the
Saturn ring configuration. This result suggests that in the
oa | | bulk, a particle withR=2 um is accompanied by a stable

hedgehog defect. This analysis has already been performed
by Stark[12] to interpret the experimentally observed de-
fects that arise with micrometer-sized particles. We have
235 L - verified the accuracy of our calculations and compared our
results to those of Stark; the results for the total free energy
for various sizes of particle are reported in Fig. 7. The agree-

» . ment is quantitativéto make the comparison betweEnin
b

1.1 1.2 1.3 1.4 15 Ref.[12] andF, one has to take into account the factey.
a (hedgehog point defect) Our results indicate that for a particle in the bulk and smaller
thanR= 250 nm, the Saturn ring configuration is more stable
FIG. 6. Total free energy for various locations of the Saturn ringthan the hedgehog, which is in very good agreement with the
disclination line(top) and the hedgehog point defetottom), in  past analysi$12].
the bulk limit and forR=2 um. The effects of confinement are investigated first by de-
creasing the radius of the cylinder. For each defect, the
value b=0.025. The equilibrium position of the ring 8  lengthL, is fixed at the value corresponding to the bulk limit
~1.1(R. This estimate is consistent with previous estimatesn the z direction. In Fig. 8, we have reported the total free
obtained with ansatz function@~1.258R [10] and a energy of the system for a particle wi=2 wm, in both
~1.08R [3]. It is also closed to the results obtained with the Saturn ring and hedgehog defect cases. Five geometries
Monte Carlo simulation[13]. This method predictsa have been considered, nameR.=4,3,1.4,1.3, andR,
~1.1R in the limit of strong homeotropic anchoring on =1.2. We find that the radius of the ring defect decreases as
sphere surface. It is in very good agreement with the valughe radius of the cylinder decreases. For a very small cylin-
a=1.1(R obtained by numerical minimizatiofil2] (in the  der, we note indeed a significant shift in the equilibrium po-
one-constant approximation and f&=0.72um), and it  sition of the defect when compared to the equilibrium loca-
agrees with experimental valuas-(1.091+0.005R anda tion in the bulk limit: the radius of the ring is approximately
=(1.095-0.003R [20] (these values were measured forlocated ata~1.08R whenR.=1.2, in contrast ta~1.1(R
particles with R=100 um and R=60 um, respectively ~ whenR.=4. This shift corresponds to the elastic force ex-
For the hedgehog configuration, the distance from the parterted by the walls, which tends to align the molecules in the
ticle to the point defect is betweea=1.20R and a  zdirection and pushes the defect closer to the particle. The
=1.29R. This estimate of the position of the point defect is location of the hedgehog defect is also slightly shifted under
in good agreement with the estimate=1.17R, obtained the effect of confinement. We find that the defect is located at
with a trial function [1], and with the valuea=(1.26 a~1.2(R for R.=1.2. The total free energy reported in Fig.
+0.02)R obtained by numerical minimizatioh12]. It is 8 corresponds ta=1.2(R (on this scale, one cannot distin-
closed to the Monte Carlo results3] in the strong anchor- guish the difference in the total free energy between
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60 . . . " 70 ; . ' T
—oO RxL,=4.0x4 ---- R=2um
@---B RxL,=3.0x4 65 —-— R=20um .
—ORxL=144 (|  + TTTTTT ——- R=200um
50 | &—ARXL~=1.3x4 | 60 [ 1
*—* RxL,=1.2x4
55 ————— E
¢ M = 50 7
45 + -
30 e T et
40 + .
35 + -
20 . . . .
1 1.1 1.2 1.3 1.4 15
a (Saturn ring) 80
Saturn ring Hedgehog
60 . . . .
* O R,xL,=4.0x6 FIG. 9. Transition from Saturn ring to hedgehog defect for a
o RxL,=3.0x6 particle confined by a cylinder witR.=1.2R.
O RxL,=1.4x6 - ) ] )
50 - A RxL=1.3x6 | ] that the stability of the Saturn ring configuration, for a par-
A * RxL=1.2x6 ticle in the bulk, is promoted by an external field applied in
the direction of the symmetry axithe z direction. For posi-
0L o | tive anisotropic susceptibilityor permittivity), the applied
magnetic field tends to align the molecules in the direction of
the external field. In the present study, liquid crystals at all
various confining surfaces are aligned in thdirection. The
30 + E order at the surfaces is transmitted to the bulk through elastic
forces, and the wall acts as an external fighdomoting the
8 Saturn ring configuration
2 . . . . In a recent experimenR0], Gu and Abbott have observed
1 1.1 1.2 1.3 1.4 15 particles of radii ranging fronR=40 xwm to 100um, sur-

rounded by a Saturn ring. The particles are immersed in
nematic 5CB and confined between two walls separated by a
FIG. 8. Total free energy for a particle witR=2 xm, sur-  distance of 12Qum (and with the same anchoring conditions
rounded by a Saturn ringop) and by a hedgehog defetottom), ~ as in the present stuglySome of these Saturn ring defects
for various radiiR, of the cylinder. were observed to be stable for over 1 month. Spontaneous
transformations of Saturn ring defects to other types of de-
=1.2(R anda=1.23R). The results serve also to emphasizefects were also observed. The transformed configurations
that the distortion of the director created by the confininghave a dipolar symmetry, like the symmetry of the hedgehog
surfaces induces a strong increase in the elastic free energjefect, but cannot be definitively classified as hedgehog
For example, for a particle witiR=2 um confined to a point defects. These experiments indicate also that the Saturn
small cylinder of radiu®k.= 1.2, confinement leads to a re- ring is not exactly located in the equatorial plane of the par-
versal of stability in which the Saturn ring configuration be-ticle but it deviates from it, exhibiting some oscillations. The
comes more stable than the hedgehog configuration. Thus, geformation of the Saturn ring may be an effect induced by
contrast to the bulk situation, the Saturn ring configuration ishe presence of the two confining walls. Indeed, the two ver-
expected to be more stable than the hedgehog defect forteal walls should affect the axial symmetry of the Saturn
micrometer particle. We have performed this analysis foring configuration and thus distort slightly the disclination
three different particle sizeR=2 um, R=40 um, andR  line. The existence of these Saturn rings for durations of over
=100 um). The results are reported in Fig. 9 for a particle1 month, and the fact that they form for such large particles
confined to a cylinder of radiuR.=1.2R. For this geometry, (40 um=<R=100um) suggest that the confinement in-
our results indicate that the transition from the Saturn ring taduced by the walls influences the metastability of the Saturn
the hedgehog defect occurs at a radiusRef20 um. The  ring and pathways that convert Saturn rings to point defects.
net effect of the neighboring surfaces is thus to promote the To establish a comparison between these experiments and
stability of the Saturn ring. the present work, some precautions must be taken. First, the
These results on the effect of confinement should be comgeometry of the present system differs from the experiments;
pared qualitatively with the effect of external magnetic  the results presented here concern particles in a cylinder.
electrig fields. The study reported by Stafk2] indicates Second, the present study addresses the effect of confinement

a (hedgehog point defect)
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! 60 T T T T T
---- R=2um
______ —-— R=20um
a8 | i 55 ——- R=100um ]
—— Hedgehog (z=0)
o——o Hedgehog (z=-0.2)
50 E
N 83t - .
ol R
Wz 0T 7
og L —> RCXLZ=4X4 ] 40 - ]
&—A RXL,=4x3
*——* RxL,=4x2.5 -
K 8
2 1 1 1 1 L
% 1.1 1.2 1.3 1.4 1.5 e °
a (Saturn ring) 30 ' ' ' '
Saturn ring Hedgehog
0 RxL,=4x6 FIG. 11. Transition from Saturn ring to hedgehog defect for a
© RoxL=4x4 particle confined between two horizontal plates with=2.5R.
38 - A RxL=4x3 _
% * RxL,=4x2.5 We have performed the same analysis by confining the

particle between two plates. This is achieved by decreasing
the lengthL, of the cylinder and fixing the radiug, to the

33t ] bulk value. In this geometry, the confining surfaces are thus
parallel to the plane defined by the Saturn ring disclination
line. The total free energy for the valués=4,3,2.5 is re-

= ported in Fig. 10, for both the Saturn ring and the hedgehog
28 - ) defects. For the hedgehog defect we have also reported on
the total free energy in the bulk limlt,=6. In this figure,

the radius of the particle is fixed &=2 um, and the par-

03 J H \ . ticle is located in the middle of the layer. The transition from
1 1.4 1.2 1.3 14 15 the Saturn ring to the hedgehog is summarized in Fig. 11, for
a (hedgehog point defect) L,=2.5. For this geometry, as mentioned previously, the

equilibrium location of a particle surrounded by the hedge-

FIG. 10. Total free energy for a particle wiR=2 um, sur- hog defect is not in the middle of the two plates, but the
rounded by a Saturn rinlop) and by a hedgehog defetiottom), particle is trapped at a shifted vertical position. In Fig. 11, we
confined between two horizontal plates with various lengthef  have reported the free energy when the particle is in the
the cylinder. middle of the layer and when the particle is trapped at its
shifted equilibrium position near one of the surfaces. Accord-

on the stability of the defects and does not give any informalnd t0 these results, fdk=2 um, a particle near the surface,
tion on metastability or pathways that convert a Saturn rin hich is accompanied by the hedgehog defect is more stable

to other defects. Qualitatively, this study indicates that th hatn a partic_lrehin t?e mi?j(_dlf, Whifhz i;’ atcr:]cotmpar)ti_ed %y the
Saturn ring configuration is promoted by confinement ana&? urn ring. Thus, for a distandg=2.5, the transition be-

that it can become the most stable configuration in a confine een the two defects occurs slightly beI.E“ 2 pm. From
. . ese results, we conclude that the confinement between two
geometry. For instance, a particle with=2 pxm should be

ded b table Sat : h fined i Ihorizontal plates is qualitatively similar to the confinement in
surrounded by a stable saturn ring when confined in a Cyly o), cylinder, promoting also the Saturn ring configura-

inder withR;/R=1.2. On the other hand, as Fig. 9 indicates.ii,, |y the cylinderR,/R=1.2, the transition occurs around
for t_he same value of _the rat|C/R=__1.2, the Saturn ring  R— 5o um, whereas for the present geometry with
configuration for particles of radiiR=40um and R _5 5 the effect of confinement is less pronounced with a
=100 pm is not the most stable one, compared to the hedgeransition occurring aroundR=2 um. These predictions
hog. (In experiments, spontaneous, transformed configuragiso appear relevant to the past experimental observations.
tions are observed in a slightly different geometry, with par-past experiments conducted with particles of radii ranging
ticles of radii R=40 um and R=100um, and with a from 40 um to 100um and confined between two horizon-
separation of 12um between the two vertical wallsfrom  tal walls with homeotropic anchoring separated by 120

the experiments and from the present study, one can thuadicate that the Saturn ring is not long lived. These obser-
conclude that confinement influences both the metastabilityations suggest that the effect of confinement is less pro-
and the stability of the Saturn ring configuration. nounced in this geometry than when the particle is confined
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between two vertical walls with planar anchoring. It would faces on the transition between the two configurations by
be interesting to conduct additional experiments with thisconsidering a particle confined in a cylinder and between two
geometry and using micrometer-sized particles, to investiplates. For a particle of raditd=2 um and confined by a
gate the possible coexistence of the two defects with theylinder of radiusR.=1.2R, we have shown that the confin-
shifted equilibrium position of the particle accompanied by aing surfaces cause a reversal of the stability, in which the
hedgehog defect. Saturn ring configuration becomes more stable than the
hedgehog configuration. These results contrast with the bulk
IV. CONCLUSION and indicate that, for both geometries, the confinement pro-
) ) motes the stability of the Saturn ring configuration. This
_In this paper, we have determined the structure of the,gy helps us to understand the existing experimental obser-
director field around a particle immersed in a confined nemyations for confined systems where the metastablity of the

atic liquid crystal. We have considered strong homeotropiGatym ring is shown to be influenced by the presence of
anchoring conditions at the surface of the particle and Studconfining surfaces.

ied the transition from the Saturn ring to the hedgehog de-
fect. The results obtained in the bulk limit agree well with
previous analyses. In particular, for a particle in the bulk, we
find that the hedgehog configuration is more stable than the This work was supported by the National Science Foun-
Saturn ring when the radius of the particle is larger tRan dation through the University of Wisconsin's MRSEC on
=250 nm. We have investigated the effect of confining surNanostructured Interfaces.
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